

 [image: Deeptracy: spot vulnerabilities in your dependencies]

Attention

This documentation is a work in progress. We are currently in development phase and changing things in a daily basis.

What is Deeptracy?

Deeptracy is a tool that can scan projects to find vulnerabilities in its dependencies. It works by accessing the source
code of repositories and extracting the dependencies list to match them against the
NIST NVD Data Feeds [https://nvd.nist.gov/vuln/data-feeds]

Deeptracy perks:

	Deployed as docker containers

	Scalable

	Usable inside deployment pipelines

	Multi-language (Scan projects in Python, Java, Javascript and more)

	Reactive (we monitor new vulnerabilities and warn you if any affects your dependencies)

	Open Source :D

Welcome to Deeptracy

Welcome to Deeptracy’s documentation. This documentation is divided into two different parts.
One is the User’s Documentation which include installation and usage, and the other is the
Developer’s Documentation which include Source Code Docs documentation, local environment, testing
and so on.

User’s Documentation

This documentation is for users who want to use Deeptracy. It covers
two parts, Installation and Usage

	Installation
	Components

	Deeptracy Workers
	Environment Variables

	Deeptracy API

	Deeptracy Dashboard

	Patton

	Bringing up the environment

	Usage
	Create Projects

	Launch Scans

	Spot Vulnerabilities

	Get Notified

	Configuring a hook for your project

	API Reference
	Create Projects

	Create Scan

	Get Analyzer Vulnerabilities

	Get Scan Vulnerabilities

Developer’s Documentation

This documentation is for developers who want to contribute to Deeptracy.

	Installation
	Python Version

	Deeptracy Projects

	Virtual environments

	Deeptracy Core

	Deeptracy Workers

	Deeptracy API

	Dependencies

	Development dependencies

	Usage
	Makefiles & Dotenv

	Local environment

	Development flow

	Deeptracy Worker
	Prepare Scan

	Scan Dependencies

	Start Scan

	Run Analyzer

	Merge Results

	Notify Results

	Testing
	Unit Tests

	Acceptance Tests

	Code Coverage

Source Code Docs

	deeptracy package
	Subpackages
	deeptracy.notifications package
	Submodules

	deeptracy.notifications.slack_webhook_post module

	Module contents

	deeptracy.tasks package
	Submodules

	deeptracy.tasks.base_task module

	deeptracy.tasks.merge_results module

	deeptracy.tasks.notify_results module

	deeptracy.tasks.prepare_scan module

	deeptracy.tasks.run_analyzer module

	deeptracy.tasks.scan_deps module

	deeptracy.tasks.start_scan module

	Module contents

	Submodules

	deeptracy.celery module

	deeptracy.config module

	deeptracy.plugin_store module

	Module contents

Installation

	Installation
	Components

	Deeptracy Workers
	Environment Variables

	Deeptracy API

	Deeptracy Dashboard

	Patton

	Bringing up the environment

Components

Deeptracy has four main components:

	Deeptracy Workers is responsible of extracting project dependencies, cloning repositories, notifications and more.

	Deeptracy API this is the main entrance for actions

	Deeptracy Dashboard this is the dashboard for visual information on the system

	Patton is responsible to match dependencies with vulnerabilities

Each of this components is shipped as a docker image. You can find them in the
public deeptracy dockerhub https://hub.docker.com/search/?isAutomated=0&isOfficial=0&page=1&pullCount=0&q=deeptracy&starCount=0.

Beside the components of Deeptracy, the system needs two more things to work:

	Postgres [https://www.postgresql.org/?&] database to store projects, scans and so on

	Redis [https://redis.io/] in-memory data structure store used as message broker

This two components can be launched as a docker containers, but you can also install
them without docker.

Note

Note that if you want to run the containers by hand (no docker-compose) you need to create a custom network yourself.
You can use docker-compose to run all deeptracy components at once (see Bringing up the environment)

$ docker network create deeptracy
$ docker run --network=deeptracy -p 5432:5432 -d --name=postgres -e POSTGRES_PASSWORD=postgres postgres:alpine
$ docker run --network=deeptracy -p 6379:6379 -d --name=redis redis:3-alpine

Deeptracy Workers

Workers are celery processes. You can launch any number of workers on the same hosts. As they are celery workers
connected to a broker (redis), they will take tasks to even the workload.

One of the tasks performed by the workers is cloning repositories. For this, you need to mount the same volume
in each worker from the host, where the repositories will be cloned. This volume (SHARED_VOLUME_PATH)
will be mounted in various containers that the worker uses to perform distinct tasks.

$ docker run -d -e BROKER_URI=redis://redis:6379 \
 -e DATABASE_URI=postgresql://postgres:postgres@postgres:5432/deeptracy \
 -e SHARED_VOLUME_PATH=/tmp/deeptracy \
 -e PLUGINS_LOCATION=/opt/deeptracy/plugins \
 -v /tmp:/tmp \
 --network=deeptracy \
 bbvalabs/deeptracy:latest

Warning

Because the repository to scan is only downloaded once, you can’t have workers on different hosts,
as the source code for the project is only present int he hosts that perform the task to download it.

The workers performs almost all the task inside docker containers. The worker image has docker installed, but you
can mount the docker socket from the host in to the worker containers, so the docker in the host would be used.

Environment Variables

This are the environment variables needed by the workers

	BROKER_URI Url to the redis broker (Ex. redis://127.0.0.1:6379)

	DATABASE_URI Url to the postgres database (Ex. postgresql://postgres:postgres@127.0.0.1:5432/deeptracy)

	
	SHARED_VOLUME_PATH Path in the host to mount as a volume in Docker images. this folder

	is going to be used to clone projects to be scanned. (Ex. /tmp/deeptracy)

	
	LOCAL_PRIVATE_KEY_FILE If you wanna clone private repositories, you can specify a private key file to

	be used when cloning such repos.

Deeptracy API

The API component provides the access point to interact with deeptracy.

docker run -d -e BROKER_URI=redis://redis:6379 \
 -e DATABASE_URI=postgresql://postgres:postgres@postgres:5432/deeptracy \
 -e SERVER_ADDRESS=0.0.0.0:8080 \
 -e GUNICORN_WORKERS=5 \
 -p 8080:8080 \
 --network=deeptracy \
 bbvalabs/deeptracy-api:latest

Deeptracy Dashboard

With the dashboard you have a visual representation of the system. You can also access scan results, vulnerabilities
and more.

docker run -d -e BROKER_URI=redis://redis:6379 \
 -e DATABASE_URI=postgresql://postgres:postgres@postgres:5432/deeptracy \
 -e SERVER_ADDRESS=localhost:8080
 -p 8000:8000 \
 --network=deeptracy \
 bbvalabs/deeptracy-dashboard:latest

Patton

Path Patton is the responsible of matching dependencies with vulnerabilities. It has its own database (you can use a
namespace in a shared postgresql database) and it has an auto-sync mechanism with the vulnerabilities database.

docker run -d -e BROKER_URI=redis://redis:6379 \
 -e DATABASE_URI=postgresql://postgres:postgres@postgres:5432/patton \
 -p 8001:8001 \
 --network=deeptracy \
 bbvalabs/patton:latest

Bringing up the environment

As all the pieces are shipped as Docker containers, is easy to bring up an environment.
You can find an example with code to launch Deeptracy in a single AWS instance in the
deploy [https://github.com/BBVA/deeptracy/tree/master/deploy] folder.

This is an example of a complete Docker Compose file that launch a complete working environment.

version: '3'

services:
 deeptracy:
 image: bbvalabs/deeptracy
 depends_on:
 - redis
 - postgres
 environment:
 - BROKER_URI=redis://redis:6379
 - DATABASE_URI=postgresql://postgres:postgres@postgres:5432/deeptracy
 - SHARED_VOLUME_PATH=/tmp/deeptracy
 - LOCAL_PRIVATE_KEY_FILE=/tmp/id_rsa
 - PLUGINS_LOCATION=/opt/deeptracy/plugins
 volumes:
 - /var/run/docker.sock:/var/run/docker.sock
 - /tmp:/tmp
 privileged: true
 command: ["./wait-for-it.sh", "postgres:5432", "--", "/opt/deeptracy/run.sh"]

 deeptracy-api:
 image: bbvalabs/deeptracy-api
 depends_on:
 - redis
 - postgres
 ports:
 - 8080:8080
 environment:
 - BROKER_URI=redis://redis:6379
 - DATABASE_URI=postgresql://postgres:postgres@postgres:5432/deeptracy
 - SERVER_ADDRESS=0.0.0.0:8080
 - GUNICORN_WORKERS=1
 - LOG_LEVEL=DEBUG
 command: ["./wait-for-it.sh", "postgres:5432", "--", "/opt/deeptracy/run.sh"]

 patton:
 image: bbvalabs/patton
 depends_on:
 - redis
 - postgres
 ports:
 - 8001:8001
 environment:
 - BROKER_URI=redis://redis:6379
 - DATABASE_URI=postgresql://postgres:postgres@postgres:5432/patton
 - LOG_LEVEL=DEBUG
 command: ["./wait-for-it.sh", "postgres:5432", "--", "/opt/deeptracy/run.sh"]

 deeptracy-dashboard:
 image: bbvalabs/deeptracy-dashboard
 ports:
 - 80:8080
 environment:
 - SERVER_ADDRESS=localhost:8080

 postgres:
 image: postgres:9.6-alpine
 ports:
 - 5432:5432
 environment:
 - POSTGRES_PASSWORD=postgres
 command: -p 5432

 redis:
 image: redis:3-alpine
 ports:
 - 6379:6379

This docker compose will bring up an environment ready to be used. You can access the dashboard at localhost

Usage

This section explain how to use Deeptracy. Once installed Deeptracy can be used as a service. This means that a
public API is exposed and all functionalities can be used through it.

Create Projects

Projects are the main object in the API. A project represents a single repository that you want to scan and monitorice
for vulnerabilities. You can’t have more that one project with the same repository in the database.

To create projects you need to invoke the Create Projects endpoint after any scan.

Launch Scans

Every time a scan is launched, Deeptracy will check for the project dependencies. If the dependencies have changed
from the last scan performed, the scan will begin.

A scan is performed by cloning the project repository and running different plugins against the source code. You can
launch scans manually by calling the Create Scan endpoint or by Configuring a hook for your project.

Spot Vulnerabilities

Evey scan will run N analyzers (one for each plugin available in the system) and save the vulnerabilities found on the
database. Once all analyzers are done, all vulnerabilities are merged together and saved as a final vulnerability list.

You can access individual analyzer results with Get Analyzer Vulnerabilities endpoint or the final scan list
with the Get Scan Vulnerabilities endpoint.

Get Notified

Every time a scan finishes, if your project have the information to receive notifications you will receive one with the
spotted vulnerabilities.

Configuring a hook for your project

You can configure a hook in your repository, so every time a push is detected a scan will automatically launched for
your project. The url for the hook is {host}/api/1/webhook/

	Github [https://developer.github.com/webhooks/creating/] Create a webhook for PUSH actions only

	Bitbucket [https://confluence.atlassian.com/bitbucket/manage-webhooks-735643732.html] Create a webhook for PUSH actions only

API Reference

This section of the documentation exposes the API methods availables
to interact with.

Create Projects

Create Scan

Get Analyzer Vulnerabilities

Get Scan Vulnerabilities

Installation

	Installation
	Python Version

	Deeptracy Projects

	Virtual environments

	Deeptracy Core

	Deeptracy Workers

	Deeptracy API

	Dependencies

	Development dependencies

Python Version

We recommend using the latest version of Python 3. Deeptracy supports
Python 3.6 and newer.

Deeptracy Projects

Deeptracy has four repositories with each of its components:

	Workers [http://github.com/BBVA/deeptracy] main repository with celery tasks and plugins

	Api [http://github.com/BBVA/deeptracy-api] holds the Flask API

	Dashboard [http://github.com/BBVA/deeptracy-dashboard] has the front web

	Core [http://github.com/BBVA/deeptracy-core] shared library between workers and api projects. Data access components and plugins perks.

For develop, is recommended that you clone each repository under the same work dir:

- deeptracy-project
|- deeptracy
|- deeptracy-api
|- deeptracy-core
|- deeptracy-dashboard

Virtual environments

Is highly recommended to work with a single virtual environment [https://virtualenv.pypa.io/en/stable/]
for all the projects by creating a single environment at the same level that the rest of the projects

- deeptracy-project
|- deeptracy
|- deeptracy-api
|- deeptracy-core
|- deeptracy-dashboard
|- .venv

Deeptracy Core

Deeptracy core is a shared library that has common functionalities used in the rest of the projects. When developing is
recommended to install it in your virtualenv in
editable mode [https://pip.pypa.io/en/stable/reference/pip_install/#editable-installs]:

$ cd deeptracy-core
$ pip install -e .

This will instruct distutils to setup the core project in to development mode [https://setuptools.readthedocs.io/en/latest/setuptools.html#development-mode]

Deeptracy Workers

This project is a Celery [http://www.celeryproject.org/] project. You can install it with:

$ cd deeptracy
$ make install-requirements_dev

Deeptracy API

This project is a `Flask`_ project. You can install it with:

$ cd deeptracy-api
$ make install-requirements_dev

Dependencies

These distributions will be installed automatically when installing Deeptracy.

	Celery [http://www.celeryproject.org/] is an asynchronous task queue/job queue based on distributed message passing

	Redis [https://redis.io/] in-memory data structure store used as message broker in celery

	Psycopg [http://initd.org/psycopg/docs/] PostgreSQL database adapter for Python

	Pluginbase [http://pluginbase.pocoo.org/] for plugin management

	Docker [https://github.com/docker/docker-py] most tasks are executed inside docker containers

	PyYAML [https://pypi.python.org/pypi/PyYAML] parse yml files

Development dependencies

These distributions will be installed for development and local testing

	Bumpversion [https://github.com/peritus/bumpversion] control the version numbers in releases.

	Sphinx [http://www.sphinx-doc.org/en/stable/#] documentation generation

	Flake8 [https://pypi.python.org/pypi/flake8] for linting and code style

	Coverage [https://coverage.readthedocs.io/en/coverage-4.4.1/] checks code coverage

	Behave [http://pythonhosted.org/behave/] acceptance tests

Usage

	Usage
	Makefiles & Dotenv

	Local environment

	Development flow

	Deeptracy Worker
	Prepare Scan

	Scan Dependencies

	Start Scan

	Run Analyzer

	Merge Results

	Notify Results

Makefiles & Dotenv

To standardize tasks among repositories, each repository have a Makefile that can be used to perform common tasks.
By executing make in the root of each project you can get a detailed list of tasks that can be performed.

When executing tasks with make, we also provide a .dot-env mechanism to have local environment variables for each
project. So, the first time you perform any make task, you will be prompted for the required environment variables for
that project.

Keep in mind that you can always change the local environment for a project by editing the .env file generated
in the project root folder.

This is a sample of common tasks that can be performed with make:

$ make
clean remove all build, test, coverage and Python artifacts
test run tests quickly with py.test
test-all run tests on every python version with tox
lint check style with flake8
coverage check code coverage
docs generate and shows documentation
run launch the application
at_local run acceptance tests without environemnt. You need to start your own environment (for dev)
at_only run acceptance tests without environemnt, and just features marked as @only (for dev)
at run acceptance tests in complete docker environment

Local environment

You can have a full functional working local environment to do integration or acceptance tests. En the workers and API
projects you can find a docker-compose-yml file that will launch a postgres and a redis container:

$ cd deeptracy
$ docker-compose up

Once the database and the broker are in place, now you can launch each project issuing a make run on each of them.

Development flow

You should be doing unit test to test the new features. When you are working in deeptracy or in deeptracy-api
is likely you will also need to work in deeptracy-core. If you installed the core in Deeptracy Core you
will see the changes in the core from the other projects as soon as they are made.

Once the new feature is covered and tested with unit tests, you can launch a Local environment and run
the acceptance tests in the local environment with make at_local

Deeptracy Worker

Deeptracy worker has the celery tasks and worker to process them. The actual task flow is as follows:

 >- Run analyzer ->
Prepare Scan -> Scan Dependencies -> Start Scan ->>- Run analyzer ->-> Merge Results -> Notify
 >- Run analyzer ->

Prepare Scan

This task is the first task in the chain to scan projects. It is responsible of two things:

	Clone the repository

	Ensure the scan has a language stored. If it is not present in the database, try to extract it from
the .deeptracy.yml if it is present in the repository

Scan Dependencies

After running the actual scan, this task extracts all the dependencies for the project and store them in to the
database. The dependency list is compared with the last previous scan to check for differences. If no differences
are found in the dependency graph, the scan is aborted.

Start Scan

This task check the language of the scan and launches a task for each plugin available for that language. For
each plugin, this task will create a scan analysis in the database and launch the task that will perform the
actual scan for that plugin.

The task for the analysis are launched in parallel.

Run Analyzer

This task is the responsible to do the actual vulnerability scan in the source code. It will invoke the corresponding
plugin and then return a serialized return with each vulnerability found.

Merge Results

After all the analysis have being made, all results are sent to this task to merge the results to avoid dupplicated
results, and store the final vulnerability list in to the database.

If the project has a notification hook, this task spawn the final task to notify the project about the scan.

Notify Results

This task sends a notification to the project about the finished scan and the vulnerabilties that has being found.

Testing

Unit Tests

For development is recommended to do unit tests to speedup the process (you don’t need a full environment),
and only do acceptance and integration tests when the feature is ready and tested with unit tests.

Warning

Pipelines has a check on whether the test coverage has a minimum of code covered, so lowering the percentage
of lines of code covered by unit tests is not an option. You can check your code coverage with make coverage

Acceptance Tests

Code Coverage

deeptracy package

Subpackages

	deeptracy.notifications package
	Submodules

	deeptracy.notifications.slack_webhook_post module

	Module contents

	deeptracy.tasks package
	Submodules

	deeptracy.tasks.base_task module

	deeptracy.tasks.merge_results module

	deeptracy.tasks.notify_results module

	deeptracy.tasks.prepare_scan module

	deeptracy.tasks.run_analyzer module

	deeptracy.tasks.scan_deps module

	deeptracy.tasks.start_scan module

	Module contents

Submodules

deeptracy.celery module

deeptracy.config module

deeptracy.plugin_store module

	
class deeptracy.plugin_store.DeeptracyPluginStore

	Bases: object

	
get_all_plugin_paths()

	

	
get_plugin(plugin_id: str)

	

	
load_plugins()

	

	
class deeptracy.plugin_store.deeptracy_plugin(lang: typing.Union[str, typing.List[str]])

	Bases: object

Module contents

Deeptracy Workers Package.

This package contains celery workers and tasks to process the deeptracy flow for scanning projects.

deeptracy.notifications package

Submodules

deeptracy.notifications.slack_webhook_post module

Detailed documentation of Slack Incoming Webhooks:
https://api.slack.com/incoming-webhooks

	
deeptracy.notifications.slack_webhook_post.notify(webhook_url: str, text)

	

Module contents

deeptracy.tasks package

Submodules

deeptracy.tasks.base_task module

This module contains base class for all celery task in deeptracy and other common classes used in all tasks

	
class deeptracy.tasks.base_task.DeeptracyTask

	Bases: celery.app.task.Task

Default class for all task in deeptracy. It has error handling for logging all celery failures in tasks

	
on_failure(exc, task_id, args, kwargs, einfo)

	

	
exception deeptracy.tasks.base_task.TaskException

	Bases: BaseException

Exception for use in controlled errors inside tasks

deeptracy.tasks.merge_results module

deeptracy.tasks.notify_results module

deeptracy.tasks.prepare_scan module

	
deeptracy.tasks.prepare_scan.clone_project(base_path: str, scan_id: str, repo_url: str, repo_auth_type: str) → str

	Clone a project repository.

This method handles repository auth if the repo is not public. The repository is going to be cloned
in “(base_path)/(scan_id)/sources” folder (it will be created).

To do the clone a docker image is used: bravissimolabs/alpine-git

	Parameters

	
	base_path – (str) Base path to clone. Should be an absolute path

	scan_id – (str) Scan id that triggers the clone. Its going to be created as a folder inside the base_path

	repo_url – (str) project repository url to make the git clone

	repo_auth_type – (str) if the repo needs any kind of auth

	Returns

	returns the sources path where the repo is cloned

	
deeptracy.tasks.prepare_scan.parse_deeptracy_yml(source_dir: str)

	Find a .deeptracy.yml file inside source_dir and try to parse it.

If the file is not found, return None

	Parameters

	source_dir –

	Returns

	None is the file is not found or cant be parsed, else it returns a dict with the key/values

	
deeptracy.tasks.prepare_scan.prepare_path_to_clone_with_local_key(scan_path: str, repo: str, mounted_vol: str, source_folder: str)

	Prepare a folder to clone a repository which needs a local private key.

LOCAL_PRIVATE_KEY means we need to copy the local private key present in the host to the folder
that is being mounted in to the container that is going to perform the actual repo clone

We prepare a script with all the commands needed to perform the clone, like adding the private key
to the container ssh-agent and disabling host-key verification

	Parameters

	
	scan_path – (str) path that we need to prepare

	repo – (str) project repository to clone

	mounted_vol – (str) path to the mounted volume in the container that makes the clone

	source_folder – (str) name of the folder to made the actual clone

	Returns

	returns the command to pass to the container that makes the clone

deeptracy.tasks.run_analyzer module

deeptracy.tasks.scan_deps module

	
deeptracy.tasks.scan_deps.get_dependencies(lang: str, sources: str)

	Given a language and a sources path, scan that sources to get a complete list of dependencies.

Each language get the dependencies in a different way, but always inside a container to isolate the sources

	
deeptracy.tasks.scan_deps.get_dependencies_for_nodejs(sources: str, mounted_vol: str, docker_volumes: dict)

	

deeptracy.tasks.start_scan module

Module contents

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 deeptracy	

 	
 	
 deeptracy.config	

 	
 	
 deeptracy.notifications	

 	
 	
 deeptracy.notifications.slack_webhook_post	

 	
 	
 deeptracy.plugin_store	

 	
 	
 deeptracy.tasks	

 	
 	
 deeptracy.tasks.base_task	

 	
 	
 deeptracy.tasks.merge_results	

 	
 	
 deeptracy.tasks.notify_results	

 	
 	
 deeptracy.tasks.prepare_scan	

 	
 	
 deeptracy.tasks.run_analyzer	

 	
 	
 deeptracy.tasks.scan_deps	

 	
 	
 deeptracy.tasks.start_scan	

Index

 C
 | D
 | G
 | L
 | N
 | O
 | P
 | T

C

 	
 	clone_project() (in module deeptracy.tasks.prepare_scan)

D

 	
 	deeptracy (module)

 	deeptracy.config (module)

 	deeptracy.notifications (module)

 	deeptracy.notifications.slack_webhook_post (module)

 	deeptracy.plugin_store (module)

 	deeptracy.tasks (module)

 	deeptracy.tasks.base_task (module)

 	deeptracy.tasks.merge_results (module)

 	
 	deeptracy.tasks.notify_results (module)

 	deeptracy.tasks.prepare_scan (module)

 	deeptracy.tasks.run_analyzer (module)

 	deeptracy.tasks.scan_deps (module)

 	deeptracy.tasks.start_scan (module)

 	deeptracy_plugin (class in deeptracy.plugin_store)

 	DeeptracyPluginStore (class in deeptracy.plugin_store)

 	DeeptracyTask (class in deeptracy.tasks.base_task)

G

 	
 	get_all_plugin_paths() (deeptracy.plugin_store.DeeptracyPluginStore method)

 	get_dependencies() (in module deeptracy.tasks.scan_deps)

 	
 	get_dependencies_for_nodejs() (in module deeptracy.tasks.scan_deps)

 	get_plugin() (deeptracy.plugin_store.DeeptracyPluginStore method)

L

 	
 	load_plugins() (deeptracy.plugin_store.DeeptracyPluginStore method)

N

 	
 	notify() (in module deeptracy.notifications.slack_webhook_post)

O

 	
 	on_failure() (deeptracy.tasks.base_task.DeeptracyTask method)

P

 	
 	parse_deeptracy_yml() (in module deeptracy.tasks.prepare_scan)

 	
 	prepare_path_to_clone_with_local_key() (in module deeptracy.tasks.prepare_scan)

T

 	
 	TaskException

Developer’s Documentation

This documentation is for developers who want to contribute to Deeptracy.

	Installation
	Python Version

	Deeptracy Projects

	Virtual environments

	Deeptracy Core

	Deeptracy Workers

	Deeptracy API

	Dependencies

	Development dependencies

	Usage
	Makefiles & Dotenv

	Local environment

	Development flow

	Deeptracy Worker
	Prepare Scan

	Scan Dependencies

	Start Scan

	Run Analyzer

	Merge Results

	Notify Results

	Testing
	Unit Tests

	Acceptance Tests

	Code Coverage

Source Code Docs

	deeptracy package
	Subpackages
	deeptracy.notifications package
	Submodules

	deeptracy.notifications.slack_webhook_post module

	Module contents

	deeptracy.tasks package
	Submodules

	deeptracy.tasks.base_task module

	deeptracy.tasks.merge_results module

	deeptracy.tasks.notify_results module

	deeptracy.tasks.prepare_scan module

	deeptracy.tasks.run_analyzer module

	deeptracy.tasks.scan_deps module

	deeptracy.tasks.start_scan module

	Module contents

	Submodules

	deeptracy.celery module

	deeptracy.config module

	deeptracy.plugin_store module

	Module contents

User’s Documentation

This documentation is for users who want to use Deeptracy. It covers
two parts, Installation and Usage

	Installation
	Components

	Deeptracy Workers
	Environment Variables

	Deeptracy API

	Deeptracy Dashboard

	Patton

	Bringing up the environment

	Usage
	Create Projects

	Launch Scans

	Spot Vulnerabilities

	Get Notified

	Configuring a hook for your project

	API Reference
	Create Projects

	Create Scan

	Get Analyzer Vulnerabilities

	Get Scan Vulnerabilities

 _static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

_images/deeptracy-logo-small.png

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 What is Deeptracy?

 		
 Installation

 		
 Components

 		
 Deeptracy Workers

 		
 Environment Variables

 		
 Deeptracy API

 		
 Deeptracy Dashboard

 		
 Patton

 		
 Bringing up the environment

 		
 Usage

 		
 Create Projects

 		
 Launch Scans

 		
 Spot Vulnerabilities

 		
 Get Notified

 		
 Configuring a hook for your project

 		
 API Reference

 		
 Create Projects

 		
 Create Scan

 		
 Get Analyzer Vulnerabilities

 		
 Get Scan Vulnerabilities

 		
 Installation

 		
 Python Version

 		
 Deeptracy Projects

 		
 Virtual environments

 		
 Deeptracy Core

 		
 Deeptracy Workers

 		
 Deeptracy API

 		
 Dependencies

 		
 Development dependencies

 		
 Usage

 		
 Makefiles & Dotenv

 		
 Local environment

 		
 Development flow

 		
 Deeptracy Worker

 		
 Prepare Scan

 		
 Scan Dependencies

 		
 Start Scan

 		
 Run Analyzer

 		
 Merge Results

 		
 Notify Results

 		
 Testing

 		
 Unit Tests

 		
 Acceptance Tests

 		
 Code Coverage

 		
 deeptracy package

 		
 Subpackages

 		
 deeptracy.notifications package

 		
 deeptracy.tasks package

 		
 Submodules

 		
 deeptracy.celery module

 		
 deeptracy.config module

 		
 deeptracy.plugin_store module

 		
 Module contents

_static/down-pressed.png

_static/down.png

_static/deeptracy-logo-small.png

_static/deeptracy-logo.png

_static/minus.png

_static/plus.png

_static/file.png

