
DeepTracy Documentation
Release 0.0.1

Roberto Abdelkader Martínez Pérez

Dec 11, 2020

CONTENTS

1 What’s Deeptracy 1

2 Documentation 3

3 Contributing 5

4 License 7

5 Documentation Index 9
5.1 Architecture . 9
5.2 Quickstart . 11
5.3 Configuration File . 13
5.4 Deeptracy plugins . 15
5.5 Usage . 16
5.6 Running Deeptracy . 17
5.7 API . 18

HTTP Routing Table 23

i

ii

CHAPTER

ONE

WHAT’S DEEPTRACY

Deeptracy scans your project dependencies to spot vulnerabilities.

Is a meta tool to analyze the security issues in third party libraries used in your project.

We have created this project to simplify this process so you can focus only in the important: your project.

Deeptracy can choose the most suitable security tools for each languages and notify the spotted vulnerabilities in
the project dependencies.

1

DeepTracy Documentation, Release 0.0.1

2 Chapter 1. What’s Deeptracy

CHAPTER

TWO

DOCUMENTATION

You can learn more about Deeptracy in the official documentation.

3

https://deeptracy.readthedocs.io/en/latest/

DeepTracy Documentation, Release 0.0.1

4 Chapter 2. Documentation

CHAPTER

THREE

CONTRIBUTING

Any collaboration is welcome!

There’re many tasks to do. You can check the Issues and send us a Pull Request.

5

https://github.com/bbva/deeptracy/issues/

DeepTracy Documentation, Release 0.0.1

6 Chapter 3. Contributing

CHAPTER

FOUR

LICENSE

This project is distributed under Apache License.

7

https://github.com/BBVA/deeptracy/blob/master/LICENSE

DeepTracy Documentation, Release 0.0.1

8 Chapter 4. License

CHAPTER

FIVE

DOCUMENTATION INDEX

5.1 Architecture

5.1.1 Components

DeepTracy is composed of several components described in the following diagram:

Name Description
User A system capable of requesting new vulnerability analysis and retrieving results
BuildBot Dependency extraction
Hasura Provides data API for the user
PostgreSQL Persistence layer
DeepTracy Server Task orchestration through control API

9

DeepTracy Documentation, Release 0.0.1

5.1.2 Interactions

The following activity diagram summarizes the normal interaction among the components of the system.

Note: This conceptual diagram describe the type of interactions but not how they are performed. In other words,
this diagram does not describe if the interactions are synchronous nor asynchronous.

10 Chapter 5. Documentation Index

DeepTracy Documentation, Release 0.0.1

Name Description
Request Vulnerability Scan User request to schedule a vulnerability scan over a source repository
Schedule Dependency Ex-
traction

Ask buildbot to perform the dependency extraction process in the given reposi-
tory/commit

Dependency Extraction
Task

Use washer docker containers to extract dependencies

Extract Dependencies Launch docker containers with the appropiate environments and extract
project(s) dependencies

Report Dependencies Report dependency list to DeepTracy Server
Vulnerability Scan Scan for vulnerabilities on the retrieved dependencies using vulnerability

providers
User Feedback The provided webhook is called back to acknowledge the user that the scan is

finished
Request Results Using GraphQL© query language the user request the scan information
Retrieve Results Results are queried and retrieved from the database
Consume Results :)

5.2 Quickstart

All system components are provided as Docker containers and a docker-compose configuration exists to assist the
user on launching a testing environment.

5.2.1 Launching the Testing Environment

The testing environment is managed through the Makefile present in the project root directory.

$ make

Executing the previous code in a Linux shell will setup a fresh testing environment.

Warning: The previous command will remove any existing data.

5.2.2 Testing Environment Services

The following table contains the list of open services on the Testing Environment.

Service URL Type
graphql-engine http://localhost:8080/console Web Application
graphql-engine http://localhost:8080/v1alpha/graphql Web Application
deeptracy-server http://localhost:8088 REST API
deeptracy-buildbot http://localhost:8010 Web Application

5.2. Quickstart 11

http://localhost:8080/console
http://localhost:8080/v1alpha/graphql
http://localhost:8088
http://localhost:8010

DeepTracy Documentation, Release 0.0.1

Buildbot

Buildbot console provides a convenient way of debugging the status of the Dependency Extraction Phase of
Deeptracy.

Hasura

Hasura Console helps the user on composing GraphQL queries.

12 Chapter 5. Documentation Index

DeepTracy Documentation, Release 0.0.1

5.2.3 Makefile Targets

The main Makefile provides some convenient targets.

image

Generate the main docker image used by DeepTracy Server and buildbot.

start

Bring up the testing environment using docker-compose.

stop

Bring down the testing environment using docker-compose.

down

Destroy the testing environment using docker-compose and remove all data.

logs

Print the testing environment log files to stdout.

status

Shows the status of the different components of the testing environment.

plugins

Build all plugin docker images.

5.3 Configuration File

DeepTracy’s analysis is driven by a YAML configuration file.

5.3.1 Load Strategy

This configuration file can be load from several places:

• Analyzed respository root directory.

• On the POST analysis request (not implemented yet).

• Automatically generated from the analyzed repository using heuristics (not implemented yet).

5.3. Configuration File 13

DeepTracy Documentation, Release 0.0.1

5.3.2 File Format

projects key

A list of projects to be scanned.

projects:<name>:type

The name of the buildbot-washer docker image to be used for this scan.

projects:<name>:strategy

The name of the buildbot-washer task to be executed by the image.

Note: This value depends on the type

projects:<name>:unimportant

Boolean value. If true the scan will continue even if this particular scan fails.

projects:<name>:config

Object containing the particular configuration of the strategy.

Note: Some of the key-value pairs in this object are specific to the type while others may be common to all of
them.

projects:<name>:config:path

The location to be scanned relative to the project root.

5.3.3 Configuration Example

projects:
backend:

type: deeptracy-python:2.7
strategy: requirement_file
unimportant: false
config:

path: src/backend
requirement: requirements.txt

backend2:
type: deeptracy-mvn:3.5-jdk-9
strategy: mvn_dependencytree
unimportant: false
config:

path: src/backend2
frontend:

type: deeptracy-node:8
strategy: npm_install
unimportant: false

(continues on next page)

14 Chapter 5. Documentation Index

DeepTracy Documentation, Release 0.0.1

(continued from previous page)

config:
path: src/frontend

5.4 Deeptracy plugins

The dependency extraction proccess is carried out by Buildbot. It leverages on a plugin architecture in which
separated components, the plugins, provide different ways, called tasks, of doing de extraction. Each plugin gives
support for a particular programming language.

5.4.1 Available plugins

Currently Deeptracy offers several plugins to do dependency extraction that give support to the main programming
languages.

Dependencycheck

This plugin is intended for java projects, and uses the OWASP Dependencycheck utility (version 4.0.2) to do the
dependency extraction.

It publishes one task ‘dependency_check’.

Maven

A set of plugins intended for java projects that use Maven to do the dependency extraction, each plugin gives
support for a specific version of Maven.

Each plugin publishes one task ‘mvn_dependencytree’

Npm

A set of plugins intended for javascript projects that use Npm to do the dependency extraction, each plugin gives
support for a specific version of Npm.

Each plugin publishes one task ‘npm_install’

python

A set of plugins intended for Python project, each plugin gives support for a specific version of Python.

Each plugin publishes two task: - ‘requirement_file’, for doing the dependency extraction by analyzing the
project’s requirements.txt file. - ‘pip_install’, for doing the dependency extraction by using the pip utility.

5.4. Deeptracy plugins 15

DeepTracy Documentation, Release 0.0.1

5.5 Usage

The sequence diagram above shows the typical usage workflow.

16 Chapter 5. Documentation Index

DeepTracy Documentation, Release 0.0.1

5.6 Running Deeptracy

Deeptracy service is composed of several pieces, a docker-compose project has been created in the compose
directory in order to ease deployment and tests. These are the files and their purpose:

• .env Contains the environmental variable values needed to authenticate against a database server.

• deeptracy-config.env Contains the environmental variable values to configure the deeptracy server instance.

• docker-compose.yml Starts all the containers needed for the service. POSTGRES_HOST environment vari-
able must be provided (in command line or ,env file) in order to provide the database to the containers if not
using the database compose file.

• docker-compose-database.yml Starts a container with a postgresql database and configures the deeptracy
containers to connect to this instance.

• Dockerfile.hasuracli and hasura directory Used for configuring GraphQL engine against Deeptracy’s
database.

5.6.1 Deploy with internal database

In order to start a fully containerized environment run:

> docker-compose -f docker-compose.yml -f docker-compose-database.yml up

5.6.2 Deploy with external database

If you want to run against an existing database server run:

> docker-compose -f docker-compose.yml -e POSTGRES_HOST=somehost up

5.6.3 Docker images

Each component of the Deeptracy server has been published as a container in the BBVALabs’ organization at
Docker Hub. Each container can be configured by using environmental variables:

Buildbot

The following variables are used to configure the Buildbot server container:

• DOCKER_HOST (default=”unix://var/run/docker.sock”) For container management.

• WORKER_IMAGE_AUTOPULL default=True) Pull needed images.

• WORKER_INSTANCES (default=16) Number of instances to start.

• WORKER_IMAGE_WHITELIST (default=*) Comma separated list of allowed image shell-like patterns.

• BUILDBOT_MQ_URL (default=None) MQ endpoint if used.

• BUILDBOT_MQ_REALM (default=”buildbot”) MQ realm if MQ is used.

• BUILDBOT_MQ_DEBUG (default=False) Activate MQ debug.

• BUILDBOT_WORKER_PORT (default=9989) TCP port used by buildbot workers.

• BUILDBOT_WEB_URL (default=”http://localhost:8010/”) URL of Buildbot’s web UI.

• BUILDBOT_WEB_PORT (default=8010) Port in which Buildbot web UI is listening.

• BUILDBOT_WEB_HOST (default=”localhost”) Host in which Buildbot web UI is listening.

5.6. Running Deeptracy 17

https://cloud.docker.com/u/bbvalabs/
https://cloud.docker.com/u/bbvalabs/
http://localhost:8010/

DeepTracy Documentation, Release 0.0.1

• BUILDBOT_DB_URL (default=”sqlite://”) Database used by Buildbot to store its state.

• DEEPTRACY_SERVER_CONFIG (default=None) Defaults to use in repository analysis.

• DEEPTRACY_WORKER_IMAGE (default=”bbvalabsci/gitsec-worker”) Image used to clone repository
and parse deeptracy.yml file for repository configuration.

• DEEPTRACY_BACKEND_URL (default=None) URL of Deeptracy server to use.

Deeptracy

The following variables are used to configure the Deeptracy server container:

• POSTGRES_HOST (default=None) Database server name.

• POSTGRES_DB (default=’deeptracy’) Database name.

• POSTGRES_USER (default=None) Database username.

• POSTGRES_PASSWORD (default=None) Database password.

• REDIS_HOST (default=None) Redis’ listening address.

• REDIS_PORT (default=6379) Redis’ listening port.

• REDIS_DB (default=0) Redis’ listening .

• BUILDBOT_API (default=’http://deeptracy-buildbot:8010’) Buildbot’s URL.

• PATTON_HOST (default=’patton.owaspmadrid.org:8000’) Patton’s host and port.

• SAFETY_API_KEY (default=None)

• BOTTLE_MEMFILE_MAX (default=2048)

• MAX_ANALYSIS_INTERVAL (default=86400)

• HOST (default=’localhost’) Server’s listening address.

• PORT (default=8088) Server’s listening port.

• DEBUG (default=False) Activate server debug mode.

By default the ports exposed by each server are:

• 8010 Buildbot server.

• 8080 GraphQL engine.

• 8088 Deeptracy server.

• 9989 Buildbot worker.

5.7 API

DeepTracy API is divided in two parts: a control API and a query API.

18 Chapter 5. Documentation Index

http://deeptracy-buildbot:8010

DeepTracy Documentation, Release 0.0.1

5.7.1 Control API

The control API is provided by DeepTracy Server service and allows the user to manage the scanning tasks with
a minimal REST API.

POST /analysis/
Create and start a new analysis for the given repository & commit.

Requires a JSON object with the following parameters:

• repository: The repository.

• commit: The commit.

• webhook (optional): Webhook to notify to when the analysis finish.

Example:

{"repository": "https://github.com/nilp0inter/gitsectest",
"commit": "fdd09edd73f3fe87ea4265eeddb95935c7d25a51",
"webhook": "http://myapp.com/analysis-finished"}

Returns a JSON object containing the id of the created analysis.

{"id": "b6e98743-7830-4aef-adf6-6a0b022f778a"}

PUT /analysis/(analysis_id)/extraction/started
Signal from buildbot that the extraction phase for an analysis has started.

Note: Internal API

PUT /analysis/(analysis_id)/extraction/succeeded
Dependency extraction phase succeeded.

Must contain a JSON object with the number of tasks spawned in the server (requests made to /dependencies
and /vulnerabilities endpoints.

Example result:

{'task_count': <int>}

Note: Internal API

PUT /analysis/(analysis_id)/extraction/failed
Dependency extraction phase failed.

Note: Internal API

POST /analysis/(analysis_id)/
execution_id/dependencies Installation data from buildbot.

Requires a JSON list of objects with the following keys:

• installer: The system used to install the dependency.

• spec: The full specification used by the user to request the package.

• source: Entity providing the artifact.

• name: The real package name.

• version: The installed version of the package.

5.7. API 19

DeepTracy Documentation, Release 0.0.1

Note: Internal API

POST /analysis/(analysis_id)/
execution_id/vulnerabilities Vulnerability data from buildbot.

Requires a JSON list of objects with the following keys:

• provider: Name of the system providing the vulnerability information.

• reference: Provider unique identifier of the vulnerability.

• details: Extended JSON metadata.

• installation: JSON object containing:

– installer: The system used to install the dependency.

– spec: The full specification used by the user to request the package.

– source: Entity providing the artifact.

– name: The real package name.

– version: The installed version of the package.

Note: Internal API

5.7.2 Query API

The query API is provided by Hasura service allowing the user retrieve any report structure she wants using
GraphQL language.

The complete reference manual for Hasura can be found here.

The following example illustrate how to request all the vulnerabilities for a given analysis:

GET /v1alpha1/graphql
Perform the given query and return a JSON object with the results.

Example request

POST /v1alpha1/graphql HTTP/1.1
Content-Type: application/json

{
"query": "{\n analysis (where: {id: {_eq: \"904a2117-1da1-4c9c-a3d5-

→˓b03262f53d97\"}}){\n state\n installations {\n \tspec\n
→˓ artifact {\n name\n \tversion\n
→˓vulnerabilities {\n provider\n reference\n
→˓ details\n }\n }\n }\n }\n}\n",

"variables": null
}

Example response

HTTP/1.1 200 OK
Transfer-Encoding: chunked
Date: Fri, 24 Aug 2018 11:21:03 GMT
Server: Warp/3.2.22
Access-Control-Allow-Origin: http://localhost:8080
Access-Control-Allow-Credentials: true
Access-Control-Allow-Methods: GET,POST,PUT,PATCH,DELETE,OPTIONS

(continues on next page)

20 Chapter 5. Documentation Index

https://docs.hasura.io/1.0/graphql/manual/queries/index.html

DeepTracy Documentation, Release 0.0.1

(continued from previous page)

Content-Type: application/json; charset=utf-8

{
"data": {

"target": [
{
"repository": "https://github.com/nilp0inter/gitsectest",
"analyses": [
{
"state": "SUCCESS",
"installations": [
{
"artifact": {
"name": "Django",
"version": "1.4.4",
"vulnerabilities": [

{
"reference": "CVE-2013-1443",
"details": {

"cve": "CVE-2013-1443",
"score": 5,
"summary": "The authentication framework (django.

→˓contrib.auth) in Django 1.4.x before 1.4.8, 1.5.x before 1.5.4, and 1.6.x
→˓before 1.6 beta 4 allows remote attackers to cause a denial of service (CPU
→˓consumption) via a long password which is then hashed."

},
"provider": "patton"

}
],
"source": "pypi"

},
"spec": "django",
"id": "c4cc6c32-de4e-457d-a1b0-14adeeeaeec4"

},
{
"artifact": {
"name": "org.springframework.boot:spring-boot-starter-web",
"version": "1.1.5.RELEASE",
"vulnerabilities": [],
"source": "central.maven.org"

},
"spec": "org.springframework.boot:spring-boot-starter-

→˓web:jar:1.1.5.RELEASE:compile",
"id": "b0ea360d-60a4-4817-a4f3-978f44bd2d95"

},
{
"artifact": {
"name": "y18n",
"version": "3.2.1",
"vulnerabilities": [],
"source": "https://registry.npmjs.org/y18n/-/y18n-3.2.1.tgz

→˓"
},
"spec": "y18n@^3.2.1",
"id": "fce4863f-db14-4702-849d-0315d324c2e2"

}
],
"id": "4b200a05-f514-40fc-94b5-12ec5dbe5985",
"started": "2018-08-24T12:08:02.852095"

}
],

(continues on next page)

5.7. API 21

DeepTracy Documentation, Release 0.0.1

(continued from previous page)

"commit": "a5a01ca69ac99c793ec5af1bbc190f518d8fc412"
}

]
}

}

Query Parameters

• query – GraphQL query

• variables – List of variables to be used within the GraphQL query.

An example request using curl.

$ curl 'http://localhost:8080/v1alpha1/graphql' \
-H 'Content-Type: application/json' \
--data-binary '
{"query":"

{
analysis (where: {id: {_eq: \"904a2117-1da1-4c9c-a3d5-b03262f53d97\"}

→˓}){
state
installations {
spec
artifact {
name
version
vulnerabilities {
provider
reference
details

}
}

}
}

}",
"variables":null}'

22 Chapter 5. Documentation Index

HTTP ROUTING TABLE

/analysis
POST /analysis/, 19
POST /analysis/(analysis_id)/(execution_id)/dependencies,

19
POST /analysis/(analysis_id)/(execution_id)/vulnerabilities,

20
PUT /analysis/(analysis_id)/extraction/failed,

19
PUT /analysis/(analysis_id)/extraction/started,

19
PUT /analysis/(analysis_id)/extraction/succeeded,

19

/v1alpha1
GET /v1alpha1/graphql, 20

23

	What’s Deeptracy
	Documentation
	Contributing
	License
	Documentation Index
	Architecture
	Quickstart
	Configuration File
	Deeptracy plugins
	Usage
	Running Deeptracy
	API

	HTTP Routing Table

